New Paper: Ab-Initio Theory of Electron-Phonon Mediated Ultrafast Spin Relaxation of Laser-Excited Hot Electrons in Transition-Metal Ferromagnets

A new article has been presented in Physical Review B by the group of Peter Oppeneer. This computational study investigates electron spin-flip scattering induced by the electron-phonon interaction in the transition-metal ferromagnets bcc Fe, fcc Co and fcc Ni. Elliot-Yafet spin-flip scattering is computed from first principles, by employing a generalized spin-flip Eliashberg function as well as ab-initio computed phonon dispersions. Aiming at investigating the amount of electron-phonon mediated demagnetization in femtosecond laser-excited ferromagnets, the formalism is extended to treat laser-created thermalized as well as nonequilibrium, nonthermal hot electron distributions. Non-thermal distributions are found to lead to a stronger demagnetization rate than hot, thermalized distributions, yet their demagnetizing effect is not enough to explain the experimentally observed demagnetization occurring in the sub-picosecond regime.

Full details can be found at the APS website via the link here.

Posted under: New Papers

Comments are closed.