New Paper: Microscopic Explanation of Thermally Induced Magnetization Switching

Microscopic explanation of thermally induced magnetisation switching

Since the discovery by Ostler et al. of a purely thermally induced magnetisation switching (TIMS) in GdFeCo, there has been much effort to identify the cause of this unexpected phenomenon. While several works have studied the macroscopic relaxation behaviour (Mentink et al., Phys. Rev. Lett. 108, 057202 (2012).  Atxitia et al., Phys. Rev. B 87, 224417 (2013)), there has been little headway made in finding the material origins of the switching. In our new work “Two-magnon bound state causes ultrafast thermally induced magnetisation switching” published in the open access journal Scientific Reports we have found, through simulation and described with a combination of theoretical approaches, that the switching is caused by angular momentum transfer from a two magnon bound state which exists in this class of ferrimagnetic materials. Specifically, within GdFeCo we have shown that the amorphous properties of the material affect the switching behaviour because the antiferromagnetic interactions which couple the rare-earth and transition metal species have a large effect only at the interfaces of Gd clusters within the FeCo background. Our work provides a new insight into the switching which is induced by femtosecond laser pulses and gives new directions for experimentalists to focus their research.

Posted under: New Papers

Comments are closed.